
Modular Home Monitoring

System

Robert Short, Robert Simon, Gary Leutheuser

Dept. of Electrical and Computer Engineering,

University of Central Florida, Orlando, Florida,

32816-2450

Abstract — This paper details the design and
implementation of the Modular Home Monitoring System.

The Modular Home Monitoring System fills the need of a low
cost, easy to use, and modular wireless sensor network for
home monitoring. The MHMS provides Carbon Monoxide,

smoke, and humidity detection as well as a live video feed of
the users home for their peace of mind. Alerts are sent to the
user when anomalies are detected and the user can log into the

online web interface to view current sensor readings and the
image feed. At any time, the user can choose to customize the
setup of sensors in their home according to their need, up to

any arbitrary number. This gives the user total control over
the coverage of their home.

I. INTRODUCTION

The market has a demand for smart home and home

automation products, especially health and security

monitoring systems. A familiar example of a product that

fulfills this need is a home security system. Consisting of a

base station and a number of linked sensors, these notify the

homeowner (and possibly the local police) of any activity

that might indicate a break-in. However, there are also other

applications. Consider a home that is frequently left

unoccupied for long periods of time, such as a vacation

home. If, for example, a water pipe were to burst, the owner

would need to know about it, preferably before significant

damage were to occur. There are many similar scenarios

(such as a fire or a power outage, to name a few) which the

owner would like to know about without having to resort to

constant personal supervision.

If an integrated, modular system for monitoring various

sensors and generating notifications based on the gathered

data were available, the task of taking care of a property

would be greatly simplified. Perhaps more importantly,

being able to remotely verify the safety of a structure would

do wonders for the owner’s peace of mind. Ideally, such a

system would have configurable alerts, and a real-time

monitoring function, so that the user could both receive

alerts when an abnormal and possibly dangerous condition

is encountered (such as a fire) or simply view sensor

readouts to ensure that everything is working properly (by

checking the temperature to ensure that the air conditioner

is functioning, for example).

There are many systems on the market which try to fulfill

this need. Unfortunately, most of them fall far short of the

ideal. Commercially available security systems will

monitor motion detectors or door sensors and alert the

police when tripped. However, many do not alert the

homeowner (giving him or her an opportunity to interrupt

what may be a false alarm). Most are also tied to a particular

service provider, and will not function at all unless a

significant monthly fee is paid. Almost none have any

support for environmental sensors (humidity sensors,

smoke detectors, etc.). Dedicated environmental Sensor

Pods exist, but these do not support security-related

sensors. At present, the best option for anyone who desires

both security and environmental monitoring is to maintain

and install a separate system for each. This leads to a

significant increase in both complexity and cost. This is

where the Modular Home Monitoring System comes in.

The MHMS offers users the ability to monitor the status of

their house using any configuration of sensors connected to

a base station/camera module all while being affordable and

not requiring a monthly subscription.

II. SYSTEM ARCHITECTURE

The Modular Home Monitoring System uses a beacon

architecture where all sensor pods are broadcasting packets

following the iBeacon protocol to the Main Control Unit

(MCU). The MCU will then push the data onto the Internet

and to the Cloud Application. The Sensor Pods wirelessly

broadcast to our Main Control Unit (a Raspberry Pi 2) via

the Bluetooth Low Energy protocol. Functionality is built

into the system to allow an arbitrary number of Sensor Pod

broadcasts to be received by the main control unit

simultaneously, however, our prototype will only include

one of each of the three types of pods. The sensor pods send

status messages and monitor the environment when

powered on, sending sensor readouts at regular time

intervals to the MCU. The MCU then sends that data over

the internet through Wi-Fi (802.11) to the cloud

application, which then checks if the sensor data readout

meets any danger thresholds. If necessary, the application

sends the user a SMS text message alert and displays the

alert on the web user interface. The camera is connected to

the Raspberry Pi via the dedicated camera ribbon cable

using the Camera Serial Interface (CSI). The MCU starts

streaming image data from the camera when the user logs

into the user interface and elects to start the stream. More

details on the design of the sensors and MCU configuration

will be discussed in the following sections.

The sensor pods will consist of two major components: a

common “interface board”, handling functionality common

to all sensors, as well as the “sensor board”, which houses

the sensor itself and specific supporting circuitry. This

architecture allows for rapid addition of new sensor types

and for hardware reusability.

Fig. 1. System block diagram which shows the three unique
sensor pods and their high level functions, as well as the camera
and major functional cloud blocks.

III. DESIGN AND IMPLEMENTATION

A. Hardware Overview

The MHMS hardware is composed chiefly of two items:

the interface board, and the sensor board, whose

combination will be simply referred to hereafter as the

“Sensor Pod”. This configuration is shown in Fig. 2. The

interface board is unchanged between all Sensor Pods, with

the only exception being the firmware programmed into its

SoC (the RFduino). The sensor boards vary between Sensor

Pods, with the only shared characteristic being the physical

interface they utilize to connect to the interface board. The

electrical signals of the interface are not the same between

sensor boards.

B. Interface Board

The interface board has three functions:

1) The interface board provides power to the Sensor Pod.

This is accomplished via two linear voltage regulators,

which output 3.3 V and 5 V. Linear regulators are used

because of the low amount of current drawn by the Sensor

Pod – introducing cost and complexity in order to achieve

high efficiency does not have as much benefit when the

system’s power dissipation is so low.

The main source of power is an off-the-shelf, 9 V

transformer that plugs into a standard North American

home electrical outlet. In the event that this source should

be cut off, a battery backup is also provided, with circuitry

that only allows the battery’s use when the main source is

lost.

Fig. 2. Major hardware blocks, including the unique sensor
boards, the common interface boards, and the central MCU.
Communication between interface board and sensor board is
accomplished by wired connections, and communication
between the interface boards and the MCU is wireless.

2) The interface board provides a physical connection to

the sensor board. Off-the-shelf, the RFduino module

supports “shields” via a specific layout of female pin

sockets. This layout was incorporated into our board for

compatibility with this additional hardware. The most

significant advantage of providing this compatibility is that

it allows for the RFduino programming module to be

connected for in-system programming for the interface

boards.

3) The interface board broadcasts sensor data in

accordance with iBeacon. The RFduino SoC integrates a

32-bit ARM Cortex M0 CPU with an embedded 2.4 GHz

transceiver, providing a single IC that allows for

communication of sensor data to the MCU.

The interface board was implemented as a two-layer

printed circuit board and is approximately 2 inches by 4

inches in size. Through-hole components were selected

where possible to simplify the assembly process.

C. Sensor Boards

The sensor boards uniquely accommodate each

individual sensor. The three sensors supported by MHMS

at present are carbon monoxide (CO), humidity, and smoke

(which, at a higher level, serves to detect smoke-producing

fires).

D. Carbon Monoxide Sensor Board

The CO sensor board features an MQ-7 gas sensor. This

component has a resistive element that is sensitive to CO in

the air it resides in. A simple measure of the resistance of

the element is sufficient to “read” the sensor. In order to

prevent contaminated readings through absorption of other

gases onto the resistive element, it must be periodically

heated by providing voltage to the coil, allowing it to heat

via current, which “cleans” the element of the other gases,

and allows confidence that only CO levels are being

measured.

In order to accommodate this relatively high-power

heating current, a high-side MOSFET driver controlled by

the RFduino is used. A typical heating and measurement

cycle consists of 60 seconds of heating (by way of

supplying 5 V to the resistive element) and 90 seconds of

cooling (by way of providing a lower 1.4 V to the resistive

element while allowing the conductivity to settle).

E. Humidity Sensor Board

The humidity sensor board houses a Parallax HS1101

humidity sensitive capacitor. The capacitance of this device

changes with the amount of humidity in the air that it is in,

in a conveniently very nearly linear fashion. The

mathematical representation of the response, per the device

datasheet, is shown in (1), where c is the capacitance in

picofarads, RH is the percent relative humidity of the air the

capacitor is in, and c55 is the capacitance at 55% relative

humidity.

c = c55 (1.2510-7 ∙ RH3 - 1.3610-5 ∙ RH2 + (1)

 2.1910- 3 ∙ RH + 9.010-1)

The datasheet further suggests circuit consisting of a 555

timer and discrete components to measure the capacitance

of the sensor. A block diagram of this approach is shown in

Fig. 3. A block diagram of the humidity sensor board
functionality. Only three signals are required, two for power and
one for output frequency.

The theory of operation is as follows: the timer

continuously charges and discharges the sensor capacitor,

while a discrete output toggles every time the voltage across

the capacitor passes a certain threshold. The amount of time

the capacitor takes to pass this threshold will depend on the

RC time constant of the circuit, where R is a fixed value

and C will vary with the RH. In this way, a discrete signal

with a frequency proportional to the RH is output from the

sensor board for conversion to a RH percentage.

F. Smoke Sensor Board

The smoke sensor board utilizes a photoelectric smoke

sensor, one of the two typical types of sensors used in

commercial smoke alarms [1]. The smoke detection itself

is achieved via an IR LED and photodiode. The LED emits

IR light into a chamber. The chamber is designed such that

light cannot normally reach a photodiode placed at the

opposite end of the chamber. However, once smoke has

filled the chamber, the light reflects off of it and is able to

reach the photodiode and thus indicate that smoke is

present.

The RFduino cannot provide any real drive current out of

its GPIO, and thus, a driver is needed for the LED. A small

signal MOSFET is used on the smoke sensor board,

controlled by the RFduino, to provide LED drive

capabilities of 50 mA. This driver schematic is shown in

Fig. 4.

Fig. 4. IR LED MOSFET Driver, controlled by a RFduino
GPIO, to avoid source current limitations of RFduino.

The current generated by the reflected light striking the

photodiode is relatively small, and consequently generates

a relatively small (less than 100 mV) voltage across the

photodiode. This voltage is amplified by an op-amp and

before being presented to the RFduino for measurement and

transmission.

G. Firmware Overview

The interface board firmware targets the RFduino, and its

primary goal is to read sensor data, and transmit it to the

MCU via Bluetooth.

The RFduino conveniently supports the Arduino

libraries, and allows for rapid prototyping (as the Arduino

enables very high level software), while still allowing

minute details and efficiency to be gleaned through

register-level access to the target device. In this way, the

software aims to exist at the breaking point of the efficiency

curve, in the sense that it is efficient to develop as well as

being efficient when run on the hardware.

For all sensor boards, the RFduino libraries provide the

necessary functions to update and broadcast major and

minor fields per the iBeacon protocol.

H. Firmware – CO Sensor

The CO sensor firmware is responsible for controlling

the periodic driving of the CO resistive element and reading

the voltage across it (which is proportional to its resistance).

The timed coil driving is accomplished via the Arduino

function delay(). This function implements a software

delay, which is suitable because there is no processing

required while managing the coil, so there are no other

statements to block. Driving the coil through the MOSFET

is straightforward for high voltage, as the 5 V required are

already present on the power rail provided to the sensor

board. The lower voltage, however, is driven through

PWM, and the functionality is readily provided by Arduino

per the analogWrite() function. This function requires extra

care, however, as the transition from the 3.3 V domain of

the RFduino must be mapped to the 5 V domain of the

MOSFET and CO sensor. This is accomplished via a

custom pwmVoltage() function. Also, analogRead()

provides a front-end to the onboard ADCs which are used

to read in the heater voltage.

An overview of the CO firmware functionality is shown

in Fig. 5.

Fig. 5. CO sensor firmware flowchart, illustrating the cyclical
nature of heating and cooling the coil.

I. Firmware – Humidity Sensor

The humidity sensor firmware is only responsible for

interpreting the frequency of the signal originating from the

humidity sensor board. In order to accurately determine the

frequency of the signal, the timer modules of the RFduino

SoC are used. The theory of operation, shown in Fig. 6 is

as follows: an interrupt is triggered by the humidity sensor

output, which starts the timer. Upon receiving the next

rising edge of the humidity sensor output, the timer is

stopped, read, and cleared to prepare for the next sample.

In this way, as the timer frequency is known, and the

number of timer pulses accrued during the humidity pulse

is known, the unknown frequency can be determined by

simple division.

Fig. 6. Humidity sensor firmware flowchart. The firmware is
interrupt driven and capitalizes on the SoC system clock being
significantly faster than the output of the humidity sensor circuit.

J. Firmware – Smoke Sensor

The smoke sensor firmware’s functionality is to provide

a driving signal for the IR LED, and to read the amplified

output of the receiving photodiode.

In order to save power, the LED is not continuously

turned on. Instead, the LED are pulsed at a very low duty

cycle during sampling periods, which are spread out on the

order of seconds, as shown in Fig. 7.

Fig. 7. Sampling technique used in smoke sensor firmware in
order to minimize power usage. The number of samples used to
average one sample and the number of averaged samples in a
period are chosen according to experimental results.

K. Software - Main Control Unit

The MCU acts as a middle man for moving data between

the sensors and the cloud application and it continuously

monitors the iBeacon broadcasts of each Sensor Pod within

range. On top of that, the MCU is responsible for capturing

video frames from the camera and sending it to the web user

interface at least once per second when desired by the user.

The MCU software includes individual processes to take

care of each of these tasks.

The process that controls communication consists

primarily of two functions. First, it scans the area around it

for broadcasting beacons. It is possible that the user will

introduce a new sensor pod to the network at any given

moment, so the software is able to quickly pick up the

addition of new beacons on the Bluetooth network. Every

beacon scan cycle, the MCU extracts the Address, UUID,

Major and Minor fields from every beacon it sees. Since it

is not enough to do just one scan then send, several scans

are performed before data is sent to the Cloud to prevent a

non-continuous transmitting beacon from being ignored.

When the beacon scan cycle is complete, the software

packs the data into a message for the cloud service and

sends it via a client API. The cloud application is then

responsible for interpreting and displaying the data to the

user, which includes the status of the sensors, alerts, and

potentially sensor readouts.

The communication handling software must have access

to Bluetooth communication functions natively on the

Raspberry Pi. It was decided that Python would be used to

write this software. Python is recommended by many users

of Raspberry Pi because it is a lightweight, multi-paradigm

programming language that is well supported by Raspbian,

the OS that is recommended for use on Raspberry Pi. By

using Python, libraries like Python-Bluez were able to be

incorporated which allow for simple interfacing to the

Bluetooth Dongle connected to the Pi. In addition, pre-

made python libraries from IBM, ibmiotf allows for

interfacing with the IBM Internet of Things Foundation

which is how the MCU sends the sensor’s data to the cloud

application and how the image streaming software sends

pictures to the MQTT Client on the web user interface.

Using Python-Bluez ibmiotf and other supporting libraries,

the MCU is able to perform its function in the system.

Python code development was done directly on the

Raspberry Pi using the Integrated Development

Environment (IDLE). IDLE was chosen because it is

extremely simple and lightweight with no frills that many

IDE’s now a days have. Even though it is lightweight it still

comes with some useful features for novice Python

programmers such as an integrated debugger and auto-

completion. Programming on the Raspberry Pi directly

would be an inconvenience without being able to use a

VNC connection which is why the group used TightVNC

on a desktop computer on the same network as the Pi to

connect graphically to develop.

Fig. 8. MCU Communication Software Flowchart

 To stream the series of still images from the Raspberry

Pi’s camera to the web user interface, the MCU uses a

custom built software package to take, encode, send and

decode pictures. The software package has the capability of

transmitting an image stream to the Cloud at a specified

frame rate and resolution, however because of limitations

on data usage, care was taken to ensure the image stream is

not always transmitting. The stream is only be active when

the user is logged into the user interface and clicks a button

to start the steam. That button sends a signal to the MCU to

start capturing and sending images. The images taken on

the MCU are encoded to Base64 in order to be split into

packets and sent to the cloud server via MQTT [2]. From

the cloud server, a MQTT client on the web page receives

the packets, decodes the image and displays it on the web

page.

Fig. 9. Camera Stream Software Flowchart

 The camera streaming software was written in Python

using the IBM Internet of Things (IoT) Foundation

(ibmiotf) library. It has a special feature where it only sends

the image stream when the user presses the button on the

web page to do so. In order to implement this functionality

for the prototype, we used the client.commandcallback

function which allowed us to specify a function to execute

whenever a command was sent to the MCU. That function

was then responsible for setting a flag that told the main

thread to start or stop the image stream.

L. Software - Cloud Application and Database

 The cloud application runs on a cloud PaaS provider

that allows for hosting a web page, IoT connectivity, and

database management. IBM Bluemix is the PaaS that the

MHMS uses for these services. The bulk of the cloud

application takes the form of a Node-RED flow that

performs logic functions and routing on messages received

from the Internet of Things Foundation connection with the

MCU.

 The IBM Bluemix platform provides many “Services”

to aid in the development of any project or application. We

have implemented some of these provided services into our

project prototype to ensure all the requirements of the cloud

application are met. First of all, the MHMS uses the IBM

IoTF to connect the MCU to the cloud and allow simple

communication using a REST API. Once we registered the

MCU with the IoTF website, we created an application with

Node-RED. Node-RED allows users to “wire” together

hardware devices on the IoT with APIs and other online

services. We used Node-RED as our main control for our

cloud application. The Node-RED flow has the

responsibility of decoding messages, placing data in the

database, and sending alerts.

 The MCU sends all sensor data to the cloud application

without doing any interpretation of data. The application

decodes the message to determine the sensor type and

content. Once it has this information, it is stored in a non-

relational database called Sensor Status. If a sensor’s

readings are higher than a certain threshold, the message is

sent to a Sensor Alerts database and an alert is displayed on

the web user interface’s recent alerts panel. Using a simple

database check, the system checks if this is an alert that has

not been sent to the user already, if not, a text message is

sent to the user via a web SMS provider. The SMS provider

used by the MHMS is Twilio due to its low cost and ease

of use.

 The Twilio third party service was integrated into the

application to allow for SMS messages to be sent to the user

when a hazardous situation is detected. Twilio SMS allows

users to programmatically send, receive, and track

messages worldwide. Once a user (or organization in this

case) makes an account, a phone number is assigned that

can be used in API calls within all types of software. The

Twilio REST API is served over HTTPS with a base URL

of https://api.twilio.com/2010-04-01. Sending a SMS text

message is made very simple with the use of the Twilio

Node-Red node which took care of the API specifics for us.

Because we do not want users being bombarded with text

messages, a check is done to detect if this particular alert

has been sent to the user already within the past 10 minutes.

 We have decided to use a non-relational database as

our data store because of the small variety of data we

actually have to store and the fact that non-relational DB’s

are easier to learn how to use. Our database only stores

information about alerts and status messages from the

sensor pods and such it will not be very complex. Since

none of the MHMS team members were experienced in

database management, it was decided early on that the

cloud application would use the Cloudant NoSQL data base

service to provide easy to use access to a JSON data layer

in which alerts/status messages can be saved and user data

can be stored for login authentication. Cloudant NoSQL

DB is a NoSQL database as a service (DBaaS). It is built to

handle a wide variety of data types like JSON, full text and

geospatial. It is advertised to be an operational data store

optimized to handle concurrent reads and writes, and

provide high availability of data durability.

M. Software - Web User Interface

Any good home monitoring or automation system must

have a way to either interact with or display data to the user.

This is the point of systems like these, thus the User

Interface is a very important component of the overall

system. For the MHMS, it was debated whether the

interface should be a program that runs on the user’s

computer, or a web interface that can be loaded on any web

browser. Our group decided on using a web based user

interface which is accessible and fully featured even when

the user is not within their home network.

The user interface of the MHMS is a web page with

access to information on the status of your connected

Sensor Pods, recent alerts, and a stream from the MCU

Camera. The sensor pod status section of the page shows if

the pods are active and sending periodic messages or if they

are reporting some issue that needs attention. A client side

script checks the database for new alerts and display the

alerts as well as a timestamp in the recent alerts panel. The

image stream from the MCU camera is displayed on the

right hand side of the user interface to provide users the

ability to check on their home visually even when they are

not there. Two buttons above the stream allow the user to

start and stop the image stream, however if the user leaves

the page some other way the stream will automatically stop

to conserve resources. A Status indicator informs the user

if the MCU is online as well.

A good user interface must also be responsive and have

good aesthetics, which is why the MHMS user interface has

a modern style and scalable design that uses pre-existing

styling libraries. The user interface pulls data about sensors

and alerts from a database every 5 seconds using a script.

Simple database calls are used within the script to retrieve

any updated information to be displayed. Because it is bad

practice to have to reload the entire page when information

needs to be updated, the User Interface is designed in such

a way that only the parts that need to be changed will be

updated.

The prototype for the user interface is accessible and

hosted through IBM Bluemix. Bluemix applications have a

HTML front end and come with a standard URL of

myappname.mybluemix.net. This was sufficient for

building a prototype of the Modular Home Monitoring

System as it is well integrated into the other Bluemix

services that we used and required no extra work in setting

up like an external web host would.

The user interface is written in HTML/JavaScript. The

styling on the UI is done using Cascading Style Sheets

(CSS). Because the user will be checking this software

often, we tried to give the website a modern look to it.

However, because this user interface prototype is mainly

focused on functionality, the priority in development for the

UI was to get a basic, functional version done first, then add

any styling later.

To view the image stream from the MCU on the

webpage, a PAHO MQTT client was embedded into the

website through JavaScript. The client sends commands to

the MCU to start or stop the video stream, receives the

image files as Base64 data chunks and recompiles it to

show to the user. An IBM Recipe was followed to create

this functionality and pass image data through IBM IoTF.

Development of the website was done using Notepad++

for the HTML, CSS, JavaScript and PHP code. Files were

then deployed to Bluemix using the cloud foundry

command line interface which was downloaded directly

from the Bluemix console. GitHub was also used to manage

different versions of the build and keep track of changes.

IV. CONCLUSION

The ability for homeowners to remotely monitor the

health and security of their home is a rising priority in

today’s day and age. The Modular Home Monitoring

System meets this need by providing an integrated, low cost

and modular system for monitoring CO, smoke and

humidity in the home, as well as providing access to an

image stream.

This product provides users peace of mind that if a

dangerous event occurs in their home they will be first to

know and will be able to react quickly. Overall the MHMS

prototyping project has been a huge success. The lessons

learned in time management, research and prototyping have

be incredibly valuable to us and will be even more so as we

move forward into our respective careers.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and

support of Dr. Richie throughout this course.

The authors would also like to acknowledge the faculty

committee that is reviewing this project: Dr. Mingjie Lin,

Dr. Ronald F. DeMara, and Dr. Kalpathy B. Sundaram.

REFERENCES

[1] Ionization vs. Photoelectric. (2014, February 26).

(National Fire Protection Association) Retrieved

November 19, 2015, from

http://www.nfpa.org/safety-information/for-

consumers/fire-and-safety-equipment/smoke-

alarms/ionization-vs-photoelectric

[2] Nguyen, D. (n.d.). Sending and Receiving Pictures

From a Raspberry Pi via MQTT. Retrieved 10 1,

2015, from

https://developer.ibm.com/recipes/tutorials/sendi

ng-and-receiving-pictures-from-a-raspberry-pi-

via-mqtt/

Gary Leutheuser is currently a

senior at the University of

Central Florida. He plans to

graduate with a Bachelor’s of

Science in Electrical

Engineering in December

2015. He plans to pursue a

master’s degree in Computer

Engineering at the University

of Central Florida.

Robert Short is currently a senior at

the University of Central Florida.

He plans to graduate with a

Bachelor’s of Science in Electrical

Engineering in December 2015. He

plans to pursue a Master’s Degree in

Optics and Photonics.

Robert Simon is currently a senior at

the University of Central Florida.

He plans to graduate with a

Bachelor’s of Science in Computer

Engineering in December 2015. He

is currently working at Lockheed

Martin MFC as a College Work

Experience Participant and has

accepted a full time position as a

software engineer.

https://developer.ibm.com/recipes/tutorials/sending-and-receiving-pictures-from-a-raspberry-pi-via-mqtt/
https://developer.ibm.com/recipes/tutorials/sending-and-receiving-pictures-from-a-raspberry-pi-via-mqtt/
https://developer.ibm.com/recipes/tutorials/sending-and-receiving-pictures-from-a-raspberry-pi-via-mqtt/

